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INTRODUCTION 
Wavelets have had a relatively short and troubled 

history. They seem to be forever confined to 
footnotes in textbooks on Fourier theory. It seems 

that there is little that can be done with wavelets 

that cannot be done with traditional Fourier 

analysis.  
 

Stephane Mallat was not the father of wavelet 

theory, but he is certainly an evangelist. His 
textbook on the subject, A Wavelet Tour of Signal 

Processing [1], contains proofs about the theory of 

wavelets, and a summation about what is known 

about them with applications to signal processing. 
One of his many papers, Characterization of 

Signals from Multiscale Edges [2], is frequently 

cited as a link between wavelets and edge 
detection. Mallat’s method not only finds edges, 

but classifies them into different types as well. 

Mallat goes on to describe a method of recovering 
complete images using only the edges, but we will 

not implement it in this project. In this project, we 

study this paper, and implement the method of 

Mallat to multiscale edge detection and analysis. 
 

We will first present a short background on 

wavelet theory. Then we will describe the different 
types of edges that exist in images, and how they 

can be characterized using a Lipschitz constant. 

Next, we describe the algorithm for the wavelet 
transform, from the Mallat paper. Finally, we 

show the results of applying the algorithm to a test 

image, and a real image. 

 

WAVELET ANALYSIS 

THEORY 

It is best to describe wavelets by showing how 
they differ from Fourier methods. A signal in the 

time domain is described by a function f(t), where 

t is usually a moment in time. When we apply the 
Fourier transform to the signal, we obtain a 

function F(ω) that takes as input a frequency, and 
outputs a complex number describing the strength 

of that frequency in the original signal. The real 

part is the strength of the cosine of that frequency, 
and the imaginary part is the strength of the sine. 

 

One way to obtain the Fourier transform of a 
signal is to repeatedly correlate the sine and cosine 

wave with the signal. When the results high 

valued, the coefficients of the Fourier transform 
will be high. Where the signal or the wave is close 

to zero, the coefficients will be low.  

 

Fourier analysis has a big problem, however. The 
sine and cosine functions are defined from -∞ to ∞. The effects of each frequency are analyzed as if 

they were spread over the entire signal. For most 
signals, this is not the case. Consider music, which 

is continuously varying in pitch. Fourier analysis 

done on the entire song tells you which 
frequencies exist, but not where they are. 

 

The short time Fourier transform (STFT) is often 

used when the frequencies of the signal vary 
greatly with time. [3] In the JPEG image encoding 

standard, for example, the image is first broken up 

into small windows with similar characteristics. 
The Fourier transform is not applied to the entire 

image, but only to these small blocks. The 

disadvantage of this technique can be seen at high 
compression ratios, when the outlines of the 

blocks are clearly visible artifacts.  

 

A second disadvantage is in resolution of analysis. 
When larger windows are used, lower frequencies 

can be detected, but their position in time is less 

certain. With a smaller window, the position can 
be determined with greater accuracy, but lower 

frequencies will not be detected. 

 

The wavelet transform helps solve this problem. 
Once applied to a function f(t), it provides a set of 

functions Wsf(t). Each function describes the 

strength of a wavelet scaled by factor s at time t. 
The wavelet extends for only a short period, so its 

effects are limited to the area immediately 

surrounding t.  The wavelet transform will give 
information about the strengths of the frequencies 

of a signal at time t. 

 

In the first pages of his treatise [1], Mallat defines 
a wavelet as a function of zero average, 
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which is dilated with scale parameter s, and 
translated by u: 



 

  −
=

s

ut

s
tsu ψψ

1
)(,  

 

Unlike the sine and cosine functions, wavelets 

move toward quickly zero as their limits approach 

to +/-∞. 

 
In [2], Mallat notes that the derivative of a 

smoothing function is a wavelet with good 

properties. Such a wavelet is shown in Figure 1. 
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Figure 1: A smoothing function, and its corresponding 

wavelet. 

 

By correlating the signal with this function at all 

possible translations and scales, we obtain the 
continuous wavelet transform. 

 

The transformation also increases the dimension of 

the function by one. Since we have both a scaling 
and position parameter, a 1-D signal will have a 2-

D wavelet transform. As an illustration, in Figure 

2 we show the wavelet transform of a single scan 
line of an image, calculated using the algorithm in 

[2] (See Appendix A). The frequencies decrease 

from top to bottom, and pixel position increases 

from left to right. The edges in the signal result in 
funnel-shaped patterns in the wavelet transform. 

 

 
Figure 2: The 512th scanline of the famous Lena image, 

and its wavelet transform. Pixel position increases from 

left to right, and frequency increases from bottom to top. 

Only nine scales were used, but they are stretched to 

simulate a continuous transform, which is more 

illustrative. 

 
Like the Fourier transform, the wavelet transform 

is invertible. However, it is easier to throw away 
information based on position. In the Fourier 

domain, if you were to try to eliminate noise by 

simply throwing away all of the information in a 
certain frequency band, you would get back a 

smoothed signal, with rounded corners, because all 

frequencies contribute to larger structures in all 
parts of the signal. With the wavelet transform, 

however, it is possible to selectively throw out 

high frequencies in areas where they do not 

contribute to larger structures. Indeed, this is the 
idea behind wavelet compression. 

 

Here is the scan line from the Lena image, with 
the highest frequency wavelet coefficients 

removed: 
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The signal keeps the same structure as the original, 

but is smoother. Here is the same signal with the 
three highest dyadic

1
 frequency bands removed: 
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The signal is smoother, but the edges are rounder. 

So far, this frequency removal is equivalent to 
smoothing the signal with a Gaussian. The true 

power of the wavelet transform is revealed, 

however, when we selectively remove wavelet 
coefficients from the first three dyadic frequency 

bands only in positions where they are weak (in 

this case, less than +/-20): 
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Here, the signal retains much of its original 

character. Most edges remain sharp.  This simple 

algorithm for noise removal could be improved 

further if it did not change the weak coefficients in 
areas where they contribute to the larger structure. 

To do this, one would need to consider the 

coefficients across all scales, and determine the 
positions of the edges of the signal. In his paper, 

Mallat presents a way to do just that.  

 

WAVELET TRANSFORM TYPES 
There are numerous types of wavelet transforms. 
The first is the continuous wavelet transform 

(CWT). Dispite its name, the wavelet transform 

can be calculated on discrete data. All possible 
scaling factors are used, starting at 1 and 

increasing to the number of samples in the signal. 

However, the CWT is computationally expensive, 
and for most applications, a dyadic method is used 

instead. 

 

                                                   
1 Dyadic: based on successive powers of two 

In the dyadic wavelet transform, we use only 

scales that are powers of two.  
With the careful choice of an appropriate wavelet, 

this covers the entire frequency domain. At the 

scale s=1, the image is smoothed by convolving it 

with a smoothing function. At scale s=2, the 
smoothing function is stretched, and the image is 

convolved with it again. The process is repeated 

for s=4, s=8, etc., until the smoothing function is 
as large as the image. At each level, the wavelet 

transform contains information for every position t 

in the image. This method is used by Mallat. 
 

Most applications today, however, use an even 

more optimal method. Since the image is 

smoothed at each step by a filter, the image only 
contains half of the frequency information, and 

needs half as many samples. So the number of 

samples in the image is reduced at each stage as 
well. As a result, the wavelet transform is reduced 

to the same size as the original signal. Mallat 

avoids this optimization because he needs the 
redundant information to recover the image using 

only its modulus maxima (edges). 

 

CHARACTERIZATION OF EDGES 
When the wavelet transform is used with a 

smoothing function, it is equivalent to Canny edge 
detection [4]. The derivative of a Gaussian is 

convolved with the image, so that local maxima 

and minima of the image correspond to edges. 

Note Figure 2, in which large drops are 
characterized by black funnels, and leaps result in 

white funnels. It is clear that by examining the 

wavelet transform, we can extract a lot of 
information about the edges. For example, we can 

see whether it is a gradual change or a leap, or 

whether it is a giant cliff, or a momentary spike, 
by looking only at the wavelet representation. 

 

Edges are characterized mathematically by their 

Lipschitz regularity. We say that a function is 

uniformly Lipschitz α, over the interval (a,b), if, 
and only if, for every x, x0 in the interval, there is 

some constant K such that: 
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The area over the interval will never have a slope 

that is steeper than the constant K. [5] 
 

Mallat shows that the Lipschitz continuity is 

related to the wavelet transform, and that if the 

wavelet transform is Lipschitz α, the function is 

also Lipschitz  α: 
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The conclusions are summarized in the following 

table. 
 

αααα constraint Meaning Impact on 

Wavelet 

transform 

0 < α <= 1 f(x) is 

differentiable at 

x0. The change is 
gradual. 

Amplitude 

decreases 

with scale. 

α = 0 F(x) is not 

differentiable at 

x0. A sharp 
change or 

discontinuity 

exists. 

Amplitude 

remains 

the same 
across 

scales. 

-1 <= α < 0 F(x) is an impulse 

at x0. 

Amplitude 

decreases 

with scale. 

 
In Figure 3, an artificial 1-D signal is shown to 

illustrate the effects of a variety of edge types on 

the dyadic wavelet transform.  

 

 
Figure 3 

 
The algorithm can be extended to 2 dimensions. 

We say that a 2-D image is Lipschitz α in the box 
(x0, y0) – (x1, y2) if and only if there is a constant 

K, such that for any two points in the box, [2] 
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EDGE DETECTION ALGORITHM 
The algorithm for performing the edge detection is 
as follows. In the following examples, this source 

image will be used.  

 

 
When the wavelet transform of the image is 

performed, it results in two stacks of images. Since 



 

the image is 256x256 pixels, eight scaling levels 

are used, and each stack contains eight images. 
One image stack contains the separable horizontal 

filtering, and the other contains the vertical 

filtering. In the pictures that follow, the scaling 

factor s=4 is shown. However, the algorithm is 
performed at all dyadic scaling levels. 

 

At each step, the image is convolved with a 
wavelet to obtain the coefficients at that level. It is 

then smoothed with a Gaussian of increasing scale. 

Both the wavelet and Gaussian filtering is done 
using separate 1-D filters vertically and 

horizontally. 
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The modulus maxima image combines the two 

filtered images, and it is calculated using the 
formula: 
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The angular image is calculated using 
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The result is shown below. The horizontal and 

vertical images form a gradiant image. The 
modulus maxima image is the scalar value of the 

vector at each point, and the angular image is the 

angle. In the angular image, low values represent 0 

degrees from the horizontal, and higher values 
represent 90 degrees. 

 

 

Modulus Maxima Angular Image 

  
 

 

Finally, the lines of the maxima are found, using 
the information from both the modulus and 

angular image. Curiously, Mallat does not use a 

2
nd

 derivative to find them. Instead, he proposes a 
simple algorithm. A five point discrete derivative 

function was tried for this, but it did not perform 

better than Mallat’s simple algorithm.  A pixel is a 

modulus maximum if it is larger than its two 
neighbours long the angle of the gradient vector.  

A pixel has only eight neighbours, however. In my 

implementation of the algorithm, the angles from 0 

to 2π are divided into 45° sections as illustrated in 

the figure below, so that two of the eight 
neighbouring pixels can be chosen to be compared 

to the centre pixel.  

 

45°

 
Figure 5: Angles are divided into sections to choose the 

maxima among neighbouring pixels. 

 

To help detect only salient features, the maxima 
with a value above a certain threshold are taken 

and plotted. 
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The edge points can then be gathered together into 

“chains”. For point that is a maxima, we can join it 

with the point closest to it if they have similar 

angles. They thus define the multiscale image 
edges. 

 
The results of the modulus maxima edge detection 

on a real image are shown in Figure 6. For this 
project, we have selected an image of sharp 

railway tracks, shown through a blurred railing in 

the foreground.  

 
At the finest scaling factor, the edges around 

gravel on the train tracks show up, but the blurred 

round ring does not. Being a larger feature, it does 
not appear until level 3. 

 

The sharpest edges of all are the tracks 
themselves. They appear in all levels of the 

transform. 

 

CONCLUSION 
In this project, we have presented the main ideas 
of wavelet theory. Like the Fourier transform, 

wavelets give the strength of frequencies in a 

signal. Unlike the Fourier transform, they give the 
strength of the frequency at a certain moment in 

time. This property can be exploited as a method 

of multiscale edge detection.    

 
Edges can be classified into different types, and 
they are characterized by their Lipschitz 

continuity. This continuity can be derived by 

observing the evolution of the wavelet transform 
across multiple scales. This can be seen by eye in 

the 1-D case. For the 2-D case, edge detection was 

implemented at multiple scales, and the algorithm 

of   

 

REFLECTIONS 
 
Mallat’s algorithm for edge detection using 

wavelets is like Canny edge detection, but he 

claims to be able to characterize the edges by 
studying the evolution of the wavelet transform 

across multiple scales, and thus deriving the 

Lipschitz value associated with the edges. The 
algorithm seems to work well for one dimensional 

signals. However, it seems to break down for two 

dimensional signals. Mallat leaves many 

unanswered questions in his paper. The algorithm 
to chain maxima together is vague, and depends 

on many tunable factors to get right. For example, 

how close should two points be to be considered 
part of a chain? However, the chains must also be 

associated across image scales. It unclear how to 

disambiguate chains that lie close together. 

 
Making the image periodic in order to convolve it 

for the wavelet transform results in distortions at 

the lower frequency levels, because the 
convolutions begin to wrap around from one side 

of the image to the other. At the lowest frequency 

scales, the wavelet maxima are unusable. It would 
have been better to use a different method of 

extending the image, such as simply placing it in a 

bed of zeros, and discounting the resulting edge 

from the results. 
 

As a method of multiscale edge detection, wavelet 

analysis works on some levels but falls short on 
others. It works because it finds the edges and 

their angles, but in this regard it is very similar to 

doing Canny edge detection on multiple levels of 
scale. As shown in the 1-D case, it is possible to 

glean more information about the type of edge 

from the evolution across scales, but difficult to 

accomplish in the 2-D case. 
 

 



 

WAVELET TRANSFORM AND EDGE DETECTION OF AN IMAGE 
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Figure 6: The wavelet transform and exact modulus maximus detection applied to a test image. H is the original image, and A-

G are the modulus maxima at increasing levels of scaling factors. The last image, G, is distorted due to wrapping of the image 

for convolution. 



 

Appendix A – Matlab Source Code 

 

The dwt function calculates the dyadic wavelet transform of a 1-D function, using the algorithm described in 

[2]. The wavelets used are the ones described in the same paper, and pictured in Figure 1. In all of this code, 
the Matlab mod function is used to make the input signal appear to be periodic, for the purposes of 

convolution. For example, if you wanted to extract the12th  element of an eight pixel scan line, mod( 12-1, 

8)+1 would calculate the correct pixel index to be 4.  
 function [W] = dwt( F )  SizeF = size(F);     N = SizeF(1); % N should be a power of two.  J = log(N)/log(2);  W = zeros(N, J+1);  % Prepare normalization coefficients LambdaTable = [ 1.50 1.12 1.03 1.01 ]; figure; plot(F); title('Original Signal'); j = 0; while j < J      p = 2 ^ j - 1;      % Which normalization coefficient to use?     Lambda = 1;     if j < 4          Lambda = LambdaTable(j+1);     end      % convolve the function with G, as if G has 2^j-1 zeros in between the     % coefficients.     for i = 1:N         W(i,j+1) = (-2 * F(i) + 2 * F ( mod( i + p, N ) + 1 )) / Lambda;     end          %figure;     %plot(W(:,j+1));      % To get the next version of F, convolve it with H,, if H has w^j - 1     % zeros between the coefficients.     S = zeros(N,1);     for i = 1:N         S(i) = 0.125 * F( mod( i - p - 2, N) + 1 ) + ...                0.375 * F(i) + ...                0.375 * F( mod( i + p, N ) + 1 ) + ...                0.125 * F( mod( i + p * 2 + 1, N ) + 1 );     end      F = S;      j = j + 1; end  W(:,J+1) = S; 
 

The 1-D inverse wavelet transform is also implemented: function [S] = idwt( W )  [N, J] = size(W); S = W(:,J); J = J - 1;  j = J;   % Prepare normalization coefficients LambdaTable = [ 1.50 1.12 1.03 1.01 ]';  while j > 0     p = 2 ^ (j-1) - 1; % Number of zeros between H, G, K coefficients 



      % Which normalization coefficient to use?     Lambda = 1;     if j < 4          Lambda = LambdaTable(j);     end      % Calculate the K part     K = zeros(N, 1);     for i = 1:N         K(i) = 0.0078125 * W( mod( i - 3*p - 4, N) + 1, j ) + ...                0.054685  * W( mod( i - 2*p - 3, N) + 1, j ) + ...                0.171875  * W( mod( i - p - 2, N) + 1, j ) + ...                -0.171875 * W(                      i, j ) + ...                -0.054685 * W( mod( i + p    , N) + 1, j ) + ...               -0.0078125 * W( mod( i + p * 2 + 1 , N) + 1, j );     end      % Calculate the ~H part.     H = zeros(N, 1);     for i = 1:N         H(i) = 0.125 * S(mod( i - 2*p - 3, N ) + 1 ) + ...                0.375 * S(mod( i - p - 2, N ) + 1 ) + ...                0.375 * S(i) + ...                0.125 * S(mod( i +p, N ) + 1 );     end      S = K * Lambda + H;      j = j - 1; end  
 

The dwt2 function calculates the dyadic wavelet transform of a two dimensional image. It returns a three 

dimensional matrix W, which is a stack images representing the wavelet transform at dyadic scales. 
 function [Wx, Wy] = dwt2( F )  SizeF = size(F); N = SizeF(1);  J = log(N)/log(2);  Wx = zeros(N, N, J+1); Wy = zeros(N, N, J+1);   LambdaTable = [ 1.50 1.12 1.03 1.01 ]; figure; imshow( F ); title('Original Signal');  S = zeros(N,N);  figure;  j = 0; while j < J       p = 2 ^ j - 1;      % Which normalization coefficient to use?     Lambda = 1;     if j < 4          Lambda = LambdaTable(j+1);     end       for y = 1:N         for x = 1:N             Wx(y,x,j+1) = (-2 * F(y,x) + ...                           2 * F(y,mod(x+p,N)+1) ) / Lambda;              Wy(y,x,j+1) = (-2 * F(y,x) + ...                     2 * F(mod(y+p,N)+1,x) ) / Lambda;              S(y,x) = 0.125 * F( y, mod( x - p - 2, N) + 1 ) + ...                    0.375 * F(y, x) + ... 



                    0.375 * F(y,  mod( x + p, N ) + 1 ) + ...                    0.125 * F(y, mod( x + p * 2 + 1, N ) + 1 ) + ...                    0.125 * F( mod( y - p - 2, N) + 1, x ) + ...                    0.375 * F(y, x) + ...                    0.375 * F(mod( y + p, N ) + 1,x ) + ...                    0.125 * F( mod( y + p * 2 + 1, N ) + 1,x );           end       end           subplot(J,2,j*2+1);      imshow(Wx(:,:,j+1), [min(min(Wx(:,:,j+1))) max(max(Wx(:,:,j+1)))]);      subplot(J,2,j*2+2);      imshow(Wy(:,:,j+1), [min(min(Wy(:,:,j+1))) max(max(Wy(:,:,j+1)))]);       F = S;      j = j + 1; end  %W(:,:,J+1) = S; figure; imshow(S, 256);  
 
Here, we use the inverse dwt on the 1-d scanline of the lena image, to remove noise below a certain threshold, 

but retain the sharp features where strong coefficients exist. 

 I = double(imread('lena.png')); Size = 512; M = I(512,:)';  W = dwt(M);  for j = 1:3     for i = 1:512         if abs(W(i,j)) < 20              W(i,j) = 0;         end     end end      F = idwt(W); figure; plot(F); title('reconstructed');  figure; imshow( W', [ min(min(W)) max(max(W)) ] );   
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