
Automatic Letter-To-Sound Rules for Speech

Synthesis

Steve Hanov

David R. Cheriton School of Computer Science

University of Waterloo

August 13, 2007

1 Introduction

A necessary first step in text to speech synthesis is deriving the pronunciation of
words. Most TTS systems contain a dictionary. In a dictionary based approach,
each word in the dictionary has an associated pronunciation, or sequence of
phonemes. For example,

department /d ih p aa r t m an n t/;
Reagan /r ey g ah n/;
However, it is likely that a text to speech processor will encounter a word

that is not in the dictionary. There are several existing pronouncing dictionarys
available for study. The CMU pronunciation dictionary [1] contains 125,000
words. The Moby lexicon, a part of Project Gutenberg [2] contains 177,00
entries, many of which are compound words.

Both dictionaries are missing domain specific words, such as “quadrature”
or “tesseract”. Also, it missing words from the animal kingdom, such as “love-
bird”. A text to speech system must either supplement its dictionary with other
methods, or use a rules-based approach to automatically derive the pronuncia-
tion.

In this paper, we outline ways of developing letter-to-sound rules from sample
text, and then present the results of a partial implementation.

2 Prior Work

The development of letter-to-sound rules has been evolving from a fully manual
process to current methods, which may be automatic or require some human
assistance.

It is natural to think that the pronunciation of words can be governed by
a finite set of simple rules. In early grade school, children are taught a few
heuristics as they to read and write. For example, c makes the same sound as

1

Figure 1: An illustration of the method of eliminating redundant context from
dictionaries given in [7]

k, but the digraph ci and ce have the letter ’s’ sound. Another heuristic is that
a short vowel sound is changed to its long form if followed by a consonant and
then an e, as can be seen in comparing rat and rate.

In 1973, Ainswroth [3] attempted to write down all of these rules for English
in the development of a text-to-speech system. Later, Elovitz et al. [8] improved
upon them. They developed a notation for codifying the rules, so they could
be easily refined by human operators. On their sample of 1000 words from the
Brown corpus, they achieved 93.2% accuracy for phoneme translation, but only
65.6% of words contained no errors. As late as 1996, this method remained the
most commonly used in commercial TTS systems, [10] which required skilled
linguists to develop.

By 1993, machine learning algorithms were being applied to he task. In
[11], the present a method of automatically learning grapheme to phoneme
mapping rules using a Dynamically Expanding Context (DEC) technique. In
this technique, the training data is analyzed to determine how much context is
needed for each letter. For example, t alone is not enough context to determine
a sound. However, the system will learn that tion means the t is associated
with the sh sound. Context to the left and right of the letter is are placed
into a decision tree structure. This approach is also used in [7], as well as [5].
Algorithms such as these are similar to dictionary approaches. They compress
the dictionary into a tree structure and eliminate all redundancy. However, they
still present challenges in dealing with word forms not found in the dictionary,
and the danger of overtraining reduces the ability of the tree to generalize. This
approach is illustrated in Figure 1.

Luk and Damper introduced a sophisticated modern stochastic phonographic
transduction technique in [10]. Their work is cited by [5], who uses a much
simpler version in the development of the Festival text-to-speech system. In
this paper, we primarily study the methods of Daelemans [7], Luk [10], and
Black [5].

2.1 Relationship to Machine Translation

The automatic learning of letter to sound rules is strikingly similar to the meth-
ods of stochastic machine translation, described by Brown [6]. Machine transla-
tion relies on having a parallel corpus of bilingual text. First, the sentences are

2

matched up (for example, using length). In text of different languages, many
words will correspond, but be in different positions of the sentence. To find
words that are translations of each-other, the frequency of the co-incidences
of words in the individual sentences are counted. Words that frequently occur
near the same positions in the aligned sentences probably mean the same thing.
The probability is estimated iteratively using the Expectation-Maximization
algorithm.

Letter-to-sound rules follows a similar technique of building an alignment of
letters to phonemes. However, the difference is that the “words” in this case
are letter clusters, and there are no spaces between them to identify the where
they begin and end. Therefore, a necessary first step is figure out a letter to
phoneme alignment.

3 Characteristics of the Corpus

All letter-to-sound rule learning systems share some characteristics. In general,
a corpus contains a list of words and their associated pronunciation. The pro-
nunciation consists of a list of phonemes. The set of usuable phonemes can vary
depending on the corpus used, even for the same languaage. For example, the
CMU pronouncing dictionary has 39 phonemes, while Moby has 50. The dif-
ference can be attributed to the many foreign proper names in the latter, that
require phonemes such as /ch/ in Bach and /WA/ in Dubois. It can be prede-
termined beforehand which phonemes correspond to vowel sounds, and which
correspond to consonants. In this project, we use the Moby dictionary. Other
researchers frequently use the CMU dictionary or the Oxford English Dictionary
(OED).

The pronunciation of proper names is well studied in [9]. Llitjos first clas-
sifies them based on their probable language of origin to determine the proper
pronunciation. In this project, however, we filter out the proper names by
excluding words with capital letters. We also filter out abbreviations such as
“dept” by excluding words whose letter cound and phoneme count differ too
greatly.

4 Alignment

Before any statistical analysis can be done, the letters must first be aligned with
their corresponding phonemes, as in this example:

Letters: sh a ll ow
Sounds: S a l o

A variety of alignment techniques has been tried by researchers in this area.
Black found that errors in the alignment has a significant effect on the number
of errors in the transcription [5].

Two distinct techniques are evident int the literature:

3

• In the first method, each letter can be aligned with a single phoneme. The
other letters which may lie in between the matches are skipped over and
not considered.

• In the second method, sequences of letters are aligned with sequences of
phonemes. All letters are considered.

The second technique is computationally expensive, and is studied in detail
by Luk [10]. However, it is not clear that it is better.

4.1 Bootstrapping

Ideally, all words would be perfectly aligned. Some of the words that cannot
be aligned are abbreviations or errors in the dictionary. However, these can be
removed once they are found.

The key to the alignment process is to derive the probability function p(s|l)
where s is the phoneme (or sequence of phonemes) and l is the letter (or sequence
of letters).

There are two cases. If the number of phonemes matches the number of
letters, there is only one possible alignment. If the number of letters and num-
ber of phonemes differ, then there are many different alignments possible. In
English, there are usually more letters than phonemes for a given word, because
the language contains many digraphs such as /sh/ and /ch/. However, a limited
number of letters correspond to more then one phoneme: x corresponds to /ks/
and u is sometimes /y − U/.

A naive alignment method is to ignore the differences and count frequen-
cies of letter/phoneme pairs, starting at the first letter/phoneme and proceed-
ing as far as possible before running out of letters or phonemes. A slightly
smarter method, described in [7], uses a sliding window. The frequency of let-
ter/phoneme pairs counted, as in the naive method, but then the phonemes
are shifted by one, two and then three positions if possible, obtaining additional
counts. In the shifted version, the scores are greatly diminished, so the unshifted
version has a strong bias.

Black et al. use yet another alignment method. They introduce epsilons
(ǫ), so letters or phonemes can be skipped over in the alignment. The training
phase consists of finding all possible places to fit the epsilon. In Figure 2, the
ideal alignment for chat has the h corresponding to the epsilon phoneme.

c h a t
/ch/ ǫ /æ/ /t/

Figure 2: The alignment of a word, using epsilon scattering.

Dynamic Time Warping can simplify the alignment process. DTW is a
general technique for finding similarity between two sequences that are not nec-
essarily the same length. It is used heavily in [5] and [10] for finding alignments

4

Figure 3: The Discrete Time Warp algorithm can find the most probable align-
ment between letters and phonemes for a word.

between the letter and phoneme representation words. It is a dynamic pro-
gramming technique to find all possible alignments between single letters and
sounds. It can also be used to find the most probable alignment, once the p(s|l)
probabilities are known. The technique is illustrated in figure .

In each cell, the algorithm calculates a probability for all possible transitions
from other cells. Any given alignment can be found by following the path
backwards from the lower right corner of the table.

Luk [10] uses this technique for bootstrapping the alignment probabilities.
In the initial pass, transitions are assumed to be able to come from the cells
immediately above, from the left, and from the top left, even if the alignment
would be impossible (not reaching the bottom right square).

However, we found that a simple recursive method will work in an acceptable
time too, if the number of alignments isn’t too great.

4.2 Epsilon Scattering Method

In [5], the authors take a unique approach. They only allow single letter to
single phoneme pairings. To handle words with fewer phonemes than letters,
they allow some letters to map to the special epsilon phoneme. Finding all pos-
sible alignments, then, becomes the number of possible ways of placing epsilons
between the letters or sounds of the word.

The EM algorithm [4] is a way for estimating hidden parameters of a statis-
tical model. At each step, the parameters are refined in increase the likelihood
of the data, given then model and the hidden parameters. In the alignment
rules, the hidden parameters are the probabilities p(s|l).

• In the estimation step, estimates for the hidden parameters are obtained,
either by choosing any values, or preferably, by roughly guessing given the
data.

5

Figure 4: Each time a letter and sound co-occur, it strengthens the probability
that the sound results from the letter.

• In the maximization step,, new parameters are obtained that maximize
the likelihood of the data. With trivial models, one can find the best
parameters by taking the derivative to find a local maximum. However,
in most cases one uses an iterative approach to find the maximum.

Black uses a variation on this iterative approach. At each iterative step, they
use the previous p(s|l) table to find the best possible alignment for all words,
while updating newp(s|l) the new frequency counts. After normalizing, the
procedure is repeated using newp for the alignments., if any of the probabilities
changed.

4.3 Comparison of techniques

In [5], Black shows that errors in the alignment can significantly affect the
number of errors in the resulting phonetic transcription. However, it is difficult
to evaluate an alignment technique. The best thing to do is to compare them to
how a human would perform the alignment, but there is no pre-aligned corpus
available for testing. Here, we compare the techniques used.

The sliding window method, despite being very simple, works well in our
tests. Part of the resulting probabilities are shown in Figure 6. In the majority of
cases, it segments words in the same way a human would. It works particularly
well with double consonants, as in a-cc-o-mm-o-d-a-te However, it is by no
means perfect. A notable failure is ap-p-le. It appears that the l has a low
score for the /u/ sound, because it often takes this sound at the end of words,
requiring shifts and therefore a diminished score.

According to [5], the epsilon scattering method also did not achieve the
same quality of results as a human would. According to the 1998 paper, the
alignments of 63% of the words were error free. In the Festival system, Black
finally resorts to a “hand-seeded” method, whereby in a manual step, each letter
is associated with all possible sounds that it can produce. With the hand-seeded
algorithm, 78% of the words are correct.

In out implementation of the algorithm, we found a possible reason for its
failure. Unlike sliding window method, in epsilon scattering, there is no partic-
ular bias on where to put the epsilons. For example, for the word chat, both a
human and the sliding window method would align it as ch-a-t. However with
epsilon scattering this is no reason why it would not associate the c with an

6

epsilon, making it ǫ-h-a-t. Thus, in some cases it would conclude that h is as-
sociated with the /ch/ sound, and in other cases it would use c. This weakens
the association between the correct letters and sounds. The more naive sliding
window approach has a strong build-in bias for putting scoring letters highly
at the first letter of a digraph. This suggests that it may be appropriate to
combine the two methods, perhaps seeding the epsilon scattering probabilities
with the sliding window technique.

5 Learning Method

At the end of the alignment process, all of the words in the training set are
split into chunks, where each chunk corresponds to exactly one phoneme. An
example is shown here with the word high:

h igh
/H/ /AH/

Figure 5: Alignment of a word containing a trigraph

During the learning phase, the algorithm must analyze the letter/phoneme
correspondences to deduce rules. This can be done with either decision tree
methods or a probabilistic grammar.

5.1 Decision Trees

In [7], the authors use an Information Gain (IG) tree to derive pronunciation.
This is a method based on analogy and dynamically expanding context. The IG
tree is a trie structure containing the letters of a word, alternating first to the
left and then to the right of the letter of interest, and moving farther away until
just enough context is included. For example, for the i in reside, eside may be
enough context to determine the pronunciation. Thus the path through the trie
would be i.s.d.e.e. The final node would contain a link to the /AY/ sound. For
the i in president, more context would be included.

This method has the advantage of being relatively easy to implement. By
pruning all redundant information from the input dictionary, one hopes that it
will generalize to other cases. According to [7], it achieves 85 to 95% accuracy
on test words

The authors in [5] also store the knowledge in the dictionary in compressed
form. They use a Classification and Regression Tree, which is also type of
decision tree. However, any implementation of a decision tree technique method
may suffer from over training, and care must be taken to select an appropriate
stop parameter. Usually, the parameter is obtained through many trials.

7

5.2 Probabilistic Grammar

In [10], Luk et al. take a completely different approach. They derive a proba-
bilistic grammar whose symbols are letter/phoneme pairings. In addition, the
symbols may be sequences of letter/phoneme pairings. The approach is compu-
tationally expensive. It consists of three passes.

• During pass 1, the probabilities of single letter to single phoneme pairs
are bootstrapped using the naive alignment method.

• During pass 2, the aligned words are further broken down into groups of
consonants and vowels matching the pattern C* or VC*. For example,
the aligned word (sh,/S/)-(a,/AY)-(pe,/P) would be broken into the sep-
arate units (sh,/S/) and (a-pe, /AY-P/). These larger units will form the
symbols in the grammar. Note that it is already known which phonemes
correspond to vowel-type sounds, so this step is trivial.

• During pass 3, the words are analyzed a third time, and the frequency of
the possible transitions between the symbols are analyzed to determine the
rule probabilities for the grammar. This can be done as bigrams, where
the probability of transitions between every symbol is recorded.

At the end of the process, one has a probabilistic grammar that simulta-
neously generates both words and the corresponding sequences phonemes and
for the language. To determine the pronunciation of a word, the letters of the
word word are parsed into the most probable sequence of symbols. Once the
representation is found, the pronunciation is the phoneme portion of the sym-
bols. As in the alignment, the most probable parse is obtained using a dynamic
programming algorithm (in this case, the well known Viterbi variant).

Luk’s algorithm is ambitious, but very computationally expensive. In our
own implementation of pass 2, we found that the 170 000 words of the Moby dic-
tionary contain about 10 400 distinct symbols (or vowel-consonant sequences).
As part of pass 2, Luk removes redundant sequences that contain other sequences
already in the dictionary, but we did not try this.

6 Results

Several different methods of alignment were compared for this project. The
effectiveness of the technique is difficult to measure, since there is no existing
corpus of aligned words. However, by directly observing the p(s|l) table, one can
get a sense of how well an algorithm derives the probabilities. For example, in
an ideal model, the letter c should have high probability of resulting in at least
/k/, /ch/, or /s/ sounds. In Figure 6, note that the letter l has high probability
of matching sound /l/, but also matches sound ’ai’, corresponding to the third
sound in apple.

In one attempt to derive probabilities, the EM algorithm was applied using
an iterative dynamic programming technique to estimate the probabilities of

8

clusters of 1, 2, or 3 letters to 1 or 2 phonemes at the same time. This was
unsuccessful, as the table tended to find only many mappings of 3 letters to 2
phonemes. Intuitively, there should be at least some mappings involving one
letter to one phoneme. This model may be more successful if performing one
combination at a time (for example, 1 to 1, then 2 to 1, then 2 to 2, etc.).
However, after that it is not clear how to combine the probabilities.

Letter/sound p(s|l) Letter/sound p(s|l)

j / g 0.75195 q / k 0.746876
d / d 0.716836 b / b 0.711541
m / m 0.708338 f / f 0.70712
v / v 0.706131 r / R 0.6482
x / k 0.616174 l / l 0.610426
n / n 0.603342 p / p 0.600449
k / k 0.597993 s / s 0.572008
t / t 0.569154 c / k 0.54891
y / ee 0.44466 w / w 0.397284
g / g 0.397114 u / ai 0.357447
i / i 0.342331 a / ai 0.219938

a / ae 0.206886 o / ai 0.204525
g / g 0.192043 h / h 0.180872
e / e 0.175175 o / oh 0.164283
x / s 0.158519 y / eye 0.155942
e / ai 0.151028 c / s 0.135325
o / ao 0.130111 y / i 0.118607
p / f 0.108407 e / ee 0.108002
a / ay 0.104941 h / ai 0.102463
v / i 0.102243 i / ai 0.101986

u / oo 0.100222 l / ai 0.0992996
i / eye 0.0970222 u / s 0.0933466
b / ai 0.0930889 m / ai 0.0903304
r / ai 0.0809116 i / ee 0.0788786
e / R 0.0773087 k / ai 0.0769748

Figure 6: The top 50 values of the p(s|l) table resulting from the sliding window
method.

7 Future Work

Based on the research, it is our belief that the ideal system would borrow ele-
ments from both [7] and [5]. The stochastic grammar system of Luk [10] is very
computationally expensive but doesn’t make up for it in terms of accuracy over
decision tree methods.

A good system would use the method of Daelemans [7] to seed the p(s|l)

9

alignment probabilities. However, Daelemans does not iterate, so the result-
ing probabilities would seed the the epsilon scattering method. The increased
bias for the first letters in digraphs should result in better alignments, perhaps
approaching the hand-seeded method of Black.

Then the alignments would be placed into an IG tree structure, since other
methods didn’t perform significantly better.

Although stress assignment is an essential part of speech, it is not considered
in this project. Also, a production TTS system must take into account the part
of speech, as this can affect pronunciation.

References

[1] CMU Pronouncing Dictionary. http://www.speech.cs.cmu.edu/

cgi-bin/cmudict.

[2] Project Gutenberg. http://www.gutenberg.org.

[3] W. Ainsworth. A system for converting english text into speech. Audio
and Electroacoustics, IEEE Transactions on, 21(3):288–290, 1973.

[4] J.A. Bilmes. A Gentle Tutorial of the EM Algorithm and its Application to
Parameter Estimation for Gaussian Mixture and Hidden Markov Models.
International Computer Science Institute, 4, 1998.

[5] A.W. Black, K. Lenzo, and V. Pagel. Issues in Building General Letter to
Sound Rules. 1998.

[6] P.F. Brown, S.D. Pietra, V.J.D. Pietra, and R.L. Mercer. The Mathematic
of Statistical Machine Translation: Parameter Estimation. Computational
Linguistics, 19(2):263–311, 1994.

[7] W. Daelemans and A. Van den Bosch. Language-independent data-oriented
grapheme-to-phoneme conversion. Progress in Speech Processing, pages 77–
89, 1996.

[8] H. Elovitz, R. Johnson, A. McHugh, and J. Shore. Letter-to-sound rules
for automatic translation of english text to phonetics. Acoustics, Speech,
and Signal Processing [see also IEEE Transactions on Signal Processing],
IEEE Transactions on, 24(6):446–459, 1976.

[9] A.F. Llitjós. Improving Pronunciation Accuracy of Proper Names with
Language Origin Classes. Future, 96:10–1.

[10] RWP Luk and RI Damper. Stochastic phonographic transduction for En-
glish. Computer Speech & Language, 10(2):133–153, 1996.

[11] K. Torkkola. An efficient way to learn English grapheme-to-phoneme rule-
sautomatically. Acoustics, Speech, and Signal Processing, 1993. ICASSP-
93., 1993 IEEE International Conference on, 2, 1993.

10

