
Type Inference Using the Cartesian Product Algorithm on
a Dynamically Typed Language

Steve Hanov

University of Waterloo
200 University Avenue West

Waterloo, Ontario, Canada N2L 3G1
+1 519 888 4567

steve.hanov@mail.com

ABSTRACT
Object-oriented languages make predicting types at compile time

very difficult. In order to avoid the expensive virtual method

dispatch, a variety of call graph construction algorithms have

been researched. Such information would also be helpful if

applied to duck-typed languages--languages for which the

variables are bound to types when they are assigned a value. In

these languages, it is not even obvious to the programmer if

calling a method will work, and any extra information that can be

gleaned by the compiler would be helpful.

In this paper, we summarize the existing work on type inference.

We then implement the Cartesian Product Algorithm, applying it

to zscript, a simple java-like object-oriented language with duck-

types. Because CPA was designed for self, language without

variables, we make several additions and discuss the results. The

efficiency of our implementation is analyzed using automatically

generated programs, and possible future enhancements are

discussed.

1. INTRODUCTION
Dynamically typed, (or “duck typed”) languages are useful for

rapid prototyping and code reuse. In languages that have duck

typing, a variable’s value determines what it can do, and implies

that an object is interchangeable with any other object that

implements the same interface, regardless of whether the objects

are related by inheritance. [3]

With no types to get in the way, generic algorithms are simple to

do and code is easier to write. However, because method lookup

and type checking is done at runtime, typographical errors will

not manifest themselves until the code is run. It would be very

useful to have these errors appear when the code is compiled.

Otherwise, white box testing must take the program through not

only every possible execution path, but every possible program

state in order to ensure correctness.

Without static types, one can show that it is impossible for a

compiler determine whether the program is correct (all class

member lookups will succeed). However, in a large class of

cases, it is possible for the compiler to say with certainty that the

program will fail. For example, the code in Figure 1 should

result in an error during compilation. More complicated

examples are constructed if b is assigned different values in

multiple paths through the program, or recursion or

polymorphism is used.

In this paper, we will apply the Cartian Product Algorithm for

type inference to a simple scripting language, called zscript,

invented for this project. The scripting language allows the

definition of classes, but variables do not get bound to a type

until the time of assignment, and they can be re-assigned to a

different type later on in the program.

2. BACKGROUND
The problem of call graph construction in a dynamically typed

language is similar (but not identical) to virtual method call

resolution. Much research has been put into type inference in

statically-typed polymorphic object-oriented languages. If the

compiler can determine, for example, that a virtual method call

always resolves to the same method, then it can perform more

interprocedural optimizations, such as procedure inlining or

elimination of the virtual method dispatch. In zscript, the goal is

not efficiency, but providing more information for the

programmer.

2.1 Prior Work
Every type inference algorithm must, in some way, keep track of

the types it encounters during the analysis. In [8], Tip and

Palsberg classify type inference algorithms by the number of sets

that they keep. Some algorithms keep a set of types for each

expression. Other algorithms, such as RTA (Rapid Type Analysis

[2]) keep one set of types for the entire program, at a cost of

class BClass { sub bar() { print(“Hello, world!\n”); } } class AClass { sub main() { var b = new BClass; b.bar(); b.foo(); // Error: b is type BClass, which has no // foo method. } }
 Figure 1: Example Code

decreased accuracy. In the other extreme, k-CFA [7] is the most

expensive, and it keeps multiple sets per expression.

The simplest algorithm is Class Hierarchy Analysis (CHA). It

keeps no sets at all. When a method is called on an object, it is

assumed that all possible subtypes of the statically declared type

may be called. However, this method is unsuitable for a duck-

typed language, where there are no statically declared types.

Another simple algorithm that would be feasible is name-based

analysis. It is described in [8], but comes from multiple sources.

This algorithm takes into account only the name of the method

called. When method is called, it is deduced that the object must

be one of the classes containing that method. This algorithm is

very imprecise, because it is common for many unrelated classes

to share one or more method names. However, it can be used to

catch simple typos, such as “craete” instead of “create.” If no

known class contains the method, the program could not possibly

be correct.

In the RTA algorithm [2], program analyses methods beginning

at the entry point. When a method instantiates a class, the

methods of that class are added to the possible methods called

and they are analyzed. The algorithm is repeated until no new

classes are instantiated. RTA gains much of its accuracy from

having the object’s static type available. Otherwise, when a

method is called, no information is available other than the

method name, and all methods with that name must be

considered. As an example, many classes might have a create()

method, so if create() is called, all of them will be added to the

set of possible types. When the object’s static type is known, the

possible methods are restricted to subclasses of that type.

Palsberg and Schartzbach [5] specifically analyze call graphs in

dynamically typed languages. They present an algorithm for

creating what they call a trace graph on the whole program. The

nodes are all of the methods in a program, and the edges are

connections between a statement and the possible methods which

it calls. From this graph, one can obtain a set of constraints on

the types in the program (i.e. class A must have a method foo().)

Plevyak and Chien [6] also present an algorithm for building call

graphs, and apply it to the scheme programming language. The

Cartesian Product Algorithm is based on this work.

Lattice-based methods applied to type inference are the most

accurate, and seem to originate with Shiver’s 1991 paper, [7]. In

it, Shivers applies control flow analysis to the scheme

programming language in order to statically gain information

about the value of its variables. It is flow-sensitive, because it

takes into account the order of execution of the program methods

and statements. Shiver presents several variants of increasing

complexity. In 0CFA, one set of information is associated with

each expression in the program. When used for type analysis, the

set contains all of the possible types of the variable, and the

analysis proceeds as if the variable could be any of those types.

This is similar to the way CPA works. In the more advanced

method, k-CFA recognizes that the variable’s actual value can be

only one element of that set, and so it analyses the program

differently for each of the possible values. Each alternative

analysis is called a contour. The increased computational cost

results in greater precision.

David Grove et al. [3] present a generalized lattice-based model.

In their model, the nodes of the lattice are call graphs. In the top

node, T, all methods call all other methods. In the bottom node

⊥, no method calls any other method. The algorithm starts from

T and selects nodes closer to ⊥ as it gains more information.

Their paper shows that a number of algorithms for building call

graphs, including both Palsberg’s and Plevyak’s, can be

implemented using the generic lattice model, and tweaking how

each statement affects the lattice and work list.

In yet another algorithm, points-to-analysis call graph

construction (PTA-CG), we begin at the main method, adding it

to the call graph. Upon analyzing it, we generate points-to-

constraints, solve them, and then resolve further call sites. The

algorithm is iterated until there are no further changes.

For this paper, however, we will implement a type inference

algorithm that is based on the Cartesian Product Algorithm

(CPA) [1]. It is chosen because it can be readily applied to a

duck-typed language, and it is relatively simple to implement. It

is also efficient because it is not iterative. It only needs to

analyze methods actually called in the program, and it only needs

to analyze them once for each combination of input arguments.

CPA was originally created for the self programming language

[9]. Although self is object-oriented, it does not include classes or

variables. CPA had to be modified to handle accessing class

members. In addition, Ole Agesen’s paper [1] did not provide all

of the details of the implementation, including how to efficiently

propagate type information throughout the nodes of the type

graph.

3. ALGORITHM
In zscript, when the user runs the program, its source text is first

transformed into a syntax tree. Then, each node of the syntax tree

is traversed to build both a type tree, and an intermediate

representation called zimple. The type tree includes classes, class

methods, and class variables, and it is used during the creation of

zimple instructions to resolve local variable names according to

scoping rules.

Figure 2: Data flow for the zscript compiler.

After each method of the program has been converted into an

intermediate representation, they are processed one by one to

gradually build a type graph, which will be described below. The

data flow for the compiler is illustrated in Figure 2.

3.1 Intermediate Representation
To simplify analysis, the syntax tree is first converted into an

intermediate representation. Each member function is packaged

as a series of zimple instructions. The instructions are high-level

and are designed to reduce the number of cases that must be

handled. For example, before a constant is used, it must first be

assigned to a temporary variable. As a result, the analysis needs

only to consider operations on variables. Figure 3 shows the

complete set of instructions that can be generated. As an

example, the program statement “return a.b.foo(10).c” is

converted into the these five zimple instructions:

t0 = a.b;

t1 = 10;

t2 = t0.foo(t1) ;

t3 = t2.c ;

return t3

3.1.1 Variable Map
For efficiency, each variable in the program is referenced by a

unique positive integer, rather than by name. As the program is

being converted into zimple code, new variables encountered in

class definitions and local variables declared inside class

methods are added to the variable map. Each variable record

contains its name and whether it is a class member. The variable

map is implemented as an array, indexed by variable ID.

3.1.2 Location Tracking
It is desirable to retain the location information of certain types

of program statements, so that the source code can be annotated

later with type information that is useful to the programmer.

Every element in the syntax tree contains location information

specifying the source file, starting and ending line number, and

character positions. The location information will be transferred

the certain zimple instructions for which it is interesting to know

the types used, such as function calls. When the type graph is

created later, this location information will be transferred into

the corresponding type nodes. Thus, when the analysis is

complete, the source code can be annotated with comments at

each call site, indicating the inferred types of variables, and

references to the points in the program where those variables

obtained their values.

After the building of the type graph is complete, zscript can

optionally print each line of the input to the display. Before each

line is printed, the nodes of the type graph are searched for

corresponding location information, and if there is a match, the

information contained in the node is displayed as comments in

the program source.
3.2 Type Graph
After each method has been converted into its intermediate

representation, zscript gradually builds a type graph by each

method called by the program.

The CPA is non-iterative. Only the methods that could

potentially be called are processed, and (except for templates)

they are only processed one time only.

In our implementation of the algorithm, we use a work list. First,

the constructor of the class containing the main method, and the

main method itself is added to the work list. Then, while the

work list is not empty, the methods of the work list are

processed. During the processing of a method, more methods

may be added to the work list. The algorithm terminates when no

more methods remain to be analyzed.

3.2.1 Building the Type Graph
As each zimple statement is analyzed, the analyzer makes

incremental modifications to the type graph, depending on the

nature of the instruction. Certain instructions are ignored:

Because the CPA is flow-insensitive, we skip over branch

instructions and instructions that evaluate mathematical

operators.

The type graph consists of nodes and directed edges. Each node

of the graph corresponds to a variable in the program, a function

call site, a function call temple, or a member variable access or

update. Node A is connected to node B if A can obtain its type

from B. Nodes that correspond to variables may additionally

contain a set of types. Thus, to obtain the type of any variable in

the program, one can perform a depth first search started at that

variable’s node. The variable’s type may be any of the types

encountered during the search.

The nodes of the graph are distinguished into several classes:

• VariableNodes correspond to a local variable or a class

variable in the program. Although the variables are

identified by their position in the variable map (See

section 3.1.1), for debugging purposes they are

assigned a unique, human readable name. Local

variables are prefixed by their complete function name,

such as MyClass.mysub.(NUMBER,

STRING).mylocal.

Assign Constant a = 10

a = new AClass

a = “”

Assignment a = b

Access

Update

Call

a = b.c

a.b = c

a = b.c(d,e,f,…)

Control Flow Label:

if (a) goto L

goto L

return a

Operators a = !b

a = b + c

a = b * c

…etc

Figure 3: zimple instruction types

• FunctionCall nodes correspond to a call site. They

provide a way for the variable nodes to indirectly link

to the result of a function call, when the exact function

template is not yet known. FunctionCall nodes connect

VariableNodes to FunctionTemplate nodes.

• FunctionTemplate nodes distinguish functions called

with different arguments. Whenever a function is

called with a new type of argument, a function template

is created for it. A function template indirectly connects

FunctionCall nodes to whatever local variable is

returned from the function.

• AccessNodes and UpdateNodes are similar to

FunctionCall nodes and are used to provide access to

class member variables. They are further described in

section 3.4.

Whenever an instruction that references a new variable is

encountered, a node is created for that variable. If the variable

has a type assigned to it, the variable is added to the node’s type

set. If one variable is assigned to another, the corresponding

nodes are connected with an edge. See Figure 4 for an example.

3.3 Function Calls

3.3.1 Templates
The CPA results from the observation that the return value of

function calls may depend on the input parameters. An example

given in [1] is the max function. max(float,float) will return a

float value, while max(int,int) will return an integer value, and

max(int, float) may return either. CPA solves this dilemma by

separately analyzing each invocation of the method. Each

invocation is referred to as a template. (Other papers may use the

more general term contour). Within the function template, the

type of each argument is known.

Because each analysis of a function template could possibly yield

different results, they all need their own copies of local variables.

When a new function template is created, new copies of the

nodes for all of the parameters and local variables are created,

and space is created for them in the variable map (section 3.1.1).

Whenever a function call instruction is encountered, and the

types of all arguments are known, the CPA computes the

Cartesian product of the types of the argument, and connects

destination variable to all of the resulting method templates. For

example, if a = max(b,c), and b can be an integer or a float, and

c can be an integer, then a is connected to both max(INT,INT)

and max(INT,FLOAT).

3.3.2 Graph Representation
An astute reader will see that this procedure is not possible if the

types of any of the variables are not known. The CPA handles

this by creating two nodes. The destination variable gets its type

from the FunctionCall node, which references the object and all

of the arguments of the function call. There is a FunctionCall

node for every call site. When the types of the object and

arguments become known, then the FunctionCall node is

connected to the appropriate FunctionTemplate nodes. See

Figure 6 for an example.

3.4 Dot Operator
CPA does not consider access to member variables, because the

if () {

 a = new AClass;

} else {

 a = new BClass;

}

b = a;

Figure 4: Program statements, and their resulting

type graph.

Figure 6: Example of a FunctionCall and

FunctionTemplate node.

b = new MyClass;

b.c = 10;

a = b.c;

Figure 5: Program statements that use class member

variables, and the resulting type graph.

self programming language does not use variables. In more

conventional languages, procedures may use class member

variables to communicate with each other. In order to apply CPA

and give a complete the interprocedural analysis, we must first

adapt it to work with member variables.

Class members may be used in two ways. They can be accessed,

so that their value is written to a local variable, and they can be

updated so that they take on the value of a local variable. To

make these two operations work with CPA, we convert class

member variable accesses and updates into function calls. We

create special nodes in the type graph with references to the

object variable. In addition, the nodes have stored within them

the name of the member that is being accessed or updated. These

Access/Update nodes may then be treated in the CPA as normal

function calls. Instead of pointing to a function template, they

connect to the node associated with the class member. This is

illustrated in Figure 5.

4. EFFICIENCY
Zscript is a new language, so there is no existing body of

benchmarks. In order to analyze the scalability our

implementation, we have two choices: translate existing

benchmarks into zscript source code, or automatically generate

some benchmark programs. At the time of this writing, Zscript

does not have the capability of running standard benchmark

algorithms. Thus, we choose the second option.

4.1 Generating sample sets
In order to test the efficiency of our implementation of CPA, we

designed an algorithm for automatically generating programs of a

given size. The algorithm takes as input two parameters:

MaxLevels and MaxChildren, and it creates as output a valid

zscript program. The resulting program consists of two types of

classes: normal classes, and leaf classes. Normal classes have

MaxChildren member variables, each of which is a reference to

another class. Leaf classes do not have any member variables.

All classes have a single function, foo(). For normal classes, this

foo() method picks a random member variable and returns the

result of calling foo() on that object. For leaf classes, the foo()

method returns a new instance of the class in which it was

defined.

The resulting program forms a tree structure, consisting of

N=MaxChildren
MaxLevels

+1 classes. An example with

MaxChildren=1 and MaxLevels=2 is given in Figure 7. By

changing the values of MaxChildren and MaxLevels, we are able

to study how CPA reacts to both a large number of classes and a

long chain of polymorphic calls.

4.2 Results
We tested the algorithm by running it ten times, using a variety

of values for MaxChildren and MaxLevels. Zscript was compiled

using the Microsoft C++ Compiler version 8, with optimizations

disabled. The tests were performed on a 2.1 GHz Pentium

processor, with disk swapping turned off. To minimize variance,

tests were performed 10 times and the most frequently occurring

time was taken. Only the time spent constructing the type graph

was included, after the program had already been converted into

zimple instructions.

Tests were performed with extreme values for the values of

MaxChildren and MaxLevels. Figure 8 illustrates the case where

MaxChildren = 1 and MaxLevels is increased by factors of two.

In the generated program, each object has only one data member,

and calls the function foo() on it. The resulting program therefore

has a polymorphic call chain of length equal to MaxLevels.

The results are not that good. With a polymorphic call sequence

of length 512, the time is more than 11 s, which it far too long to

wait. It is worth noting, however, that such a program is highly

unlikely in a non-functional programming language.

MaxLevels Total Classes Time (ms)

64 65 47

128 129 250

256 257 1563

512 513 11543

Figure 8: MaxChildren=1

Figure 9 shows the results with MaxChildren=2. Because of the

tree structure of the automatically generated program, the

number of classes is greatly expanded. However, the CPA only

analyzes methods actually called. Since only one (random) path

through the tree is actually taken by the generated program,

theoretically the algorithm has to analyze only a small number of

methods compared to the actual number of methods that exist. In

fact, only MaxLevels functions need to be analyzed.

However, because the main object creates all of its children,

which in turn causes all objects to be created, the the bulk of the

time of the analysis is spent analyzing the constructors, and

creating nodes for the member variables that will never be

accessed. With 8193 classes, the analysis takes over 21 seconds.

MaxLevels Total Classes Time (ms)

7 129 16

class Obj2 { sub foo() { return new Obj2; } } class Obj1 { var obj2 = new Obj2 sub foo() { return obj2.foo(); } } class Obj0 { var obj1 = new Obj1 sub main() { return obj1.foo(); } }
Figure 7: Example of generated program to test the

efficiency of the algorithm. In this example,

MaxChildren=1 and MaxLevels=2.

8 257 47

9 513 125

10 1025 469

11 2049 3875

12 8193 21812

Figure 9: MaxChildren=2

In Figure 10, the above theory is tested. MaxLevels is fixed at 1,

and the resulting program has a single class containing

references to thousands of leaf classes. It seems that creating the

nodes for member variables is taking much of the time of the

analysis.

MaxChildren Total Classes Time (ms)

1024 1025 78

2048 2049 282

4096 4097 1047

Figure 10: MaxLevels=1

4.3 Discussion
The algorithm was not implemented with efficiency in mind, so

the above results are unsurprising. The algorithm is exceptionally

good at resolving long chains of polymorphic calls, but in our

implementation, it spends too much time creating nodes. The

implementation could be optimized use a more efficient data

structure for the graph.

One thing that stands out in the algorithm is the amount of work

that must be done when a new type is assigned to a variable. The

graph must be searched from that variable to see if it is used as

the object in any Access or Update nodes, or if the variable is

used in any function call arguments. If it is, then the necessary

connections must be made, and possibly more function templates

will be added to the worklist. However, backtracking through the

graph to find how the variable is used is probably an expensive

operation that is hard to predict. It would be interesting to

analyze real programs to see if the set of variables that use the

type is generally small or large.

5. ACCURACY
The CPA algorithm will find, for each variable, the set of types

that are assigned to it. In the simple language of zscript, it will

never fail to find a type. So the resulting type set is always

greater than or equal to the given types.

If the resulting types are used for error checking, however, the

results are not accurate enough. It is not acceptable for the

compiler to claim that a variable is a certain type, and fail to run

the program, when in reality the variable is assigned that type for

a very short time period. Consider the following code:

 // AClass contains foo method var a = new AClass; a.foo(); // BClass does not contain the foo method a = new BClass; a.bar();

The CPA algorithm will claim that when foo() is called, a can be

of types {AClass, BClass}. However, at that point it can be of

only one class and that is AClass, in which case calling foo() is

acceptable.

Much of the problem stems from the fact that CPA is a flow-

insensitive analysis. That is, unlike k-CFA, it does not consider

the order in which that statements of the program are executed. It

is possible to mitigate the problem, within a method, by

converting the program to SSA form prior to the analysis: var a0 = new AClass; a0.foo(); a1 = new BClass; a1.bar();

The two different program points are then operating on different

variables. However, that solves the problem only locally. It is

unclear how to add subscripts to the member variables of classes,

that are updated in multiple methods.

Another way of solving the problem is to modify the semantics of

the language, and only allow a variable to be bound to one type.

For example, once a certain type of class is assigned to the

variable, the VM could cause an exception of any other types are

ever assigned to the variable. However, such a solution is drastic

and undesirable, because it makes the language less flexible.

5.1 Dynamic Class Loading
One advantage of the CPA algorithm is that it analysis each

method (or method template) only once. If dynamic class loading

were supported by the language, then only a minimal amount of

work would be necessary upon loading a new class, provided the

type graph were saved. Only the new methods loaded in would

have to be analyzed, plus any new templates that result.

5.2 Flexible New Operator
In our implementation, a method cannot be analyzed unless the

type of the object, and all arguments are known. If any of these

have an empty type set, the method is skipped and never

analyzed, because a template cannot be created.

If zscript were expanded, then certain features could make the

CPA algorithm break down. For example, it would be very

simple to allow the new operator to take a string as its argument,

creating an object that is impossible to predict at compile time.

5.3 Source code Annotation
Because the CPA algorithm is a flow-insensitive algorithm it is

not very suitable for error checking. For each variable, does find

a complete set of types that may be assigned to that variable.

However, at every program point the variable may only be one of

those types, and when a class method is called using the variable

of the object, it need not be in every one of those types.

Although CPA finds a superset of the values that we wanted to

find, it is still good enough for source code annotation. By

carefully keeping track of the source of each type, and the

locations in the source code, each variable’s declaration in the

program text can be annotated with the types assigned to it, and

the line numbers where those types are assigned. The

programmer than then look for any surprises. With a duck-typed

language, any extra information that the compiler can give would

be very helpful.

6. FUTURE ENHANCEMENTS
The implementation of the Cartesian product algorithm for

zscript can be made more efficient in several ways. One of the

more expensive steps occurs when a new type is assigned to a

variable. At that moment, a depth first search is performed to see

if the value of that variable is ever used in a function call, either

as the object or one of the arguments. For each such call sites,

the Cartesian product of the types of the arguments are

recalculated, and if there are any more connections to be made,

the necessary edges are added to the type graph. This could

reveal more types for other variables, so the procedure is

repeated recursively. Backtracking through the graph to find all

users of a type is expensive, and the algorithm could potentially

be improved by caching users of a node.

During implementation, we made the decision to avoid caching

any values in any nodes, to avoid the problem of updating cached

values. So to find the type of a variable, the complete path from

the variable to all of the sources of its type must searched. It is

possible that less work could be done by copying the type set

from the source nodes to higher points in the graph, such as the

join points.

7. CONCLUSIONS
We have presented an implementation of the Cartesian product

algorithm, applied to a new dynamically typed language. It was

found that the original CPA had to be modified to take into

account class member variables, and the dot operator.

CPA is very good at inferring the resulting type of very long

chains of polymorphic function calls. During implementation the

goal was for correctness over efficiency, and the analysis

revealed that the implementation is slow for enterprise-size

projects. However, one must keep in mind that the target

language is a scripting language and so are unlikely to have

thousands of objects to analyze.

CPA is relatively easy to understand and to implement. It is

efficient enough for small programming sets, and it never

underreports the types of the program. Because it analyzes only

methods actually called, it is well suited for object-oriented

languages where the program only uses a small portion of the

methods available in a class library.

CPU does a good job at inferring types, but because it is flow-

insensitive, it is unsuitable for error checking programs at

compile time. However, implementing CPA is an ideal building

block for a comprehensive type checking system in a dynamically

typed language, especially when combined with more accurate

methods, such as k-CFA.

8. REFERENCES
[1] Agesen, O. 1995. The Cartesian Product Algorithm: Simple

and Precise Type Inference Of Parametric Polymorphism. In

Proceedings of the 9th European Conference on Object-

Oriented Programming (August 07 - 11, 1995). W. G.

Olthoff, Ed. Lecture Notes In Computer Science, vol. 952.

Springer-Verlag, London, 2-26.

[2] Bacon, D. F. and Sweeney, P. F. 1996. Fast static analysis

of C++ virtual function calls. In Proceedings of the 11th

ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (San

Jose, California, United States, October 06 - 10, 1996).

OOPSLA '96. ACM Press, New York, NY, 324-341.

[3] “Duck_typing.” Wikipedia. http://www.wikipedia.org

[4] Grove, D., DeFouw, G., Dean, J., and Chambers, C. 1997.

Call graph construction in object-oriented languages.

SIGPLAN Not. 32, 10 (Oct. 1997), 108-124.

[5] Palsberg, J. and Schwartzbach, M. I. 1991. Object-oriented

type inference. In Conference Proceedings on Object-

Oriented Programming Systems, Languages, and

Applications (Phoenix, Arizona, United States, October 06 -

11, 1991). A. Paepcke, Ed. OOPSLA '91. ACM Press, New

York, NY, 146-161.

[6] Plevyak, J. and Chien, A. A. 1994. Precise concrete type

inference for object-oriented languages. In Proceedings of

the Ninth Annual Conference on Object-Oriented

Programming Systems, Language, and Applications

(Portland, Oregon, United States, October 23 - 28, 1994). R.

L. Wexelblat, Ed. OOPSLA '94. ACM Press, New York,

NY, 324-340.

[7] Shivers, O. Control Flow Analysis of Higher Order

Languages. PhD thesis, CMU, May 1991. CMU-CS-91-145.

[8] Tip, F. and Palsberg, J. 2000. Scalable propagation-based

call graph construction algorithms. In Proceedings of the

15th ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications

(Minneapolis, Minnesota, United States). OOPSLA '00.

ACM Press, New York, NY, 281-293.

[9] Ungar, D. and Smith, R. B. 1987. Self: The power of

simplicity. In Conference Proceedings on Object-Oriented

Programming Systems, Languages and Applications

(Orlando, Florida, United States, October 04 - 08, 1987). N.

Meyrowitz, Ed. OOPSLA '87. ACM Press, New York, NY,

227-242.

