
Type Inference Using the Cartesian Product Algorithm on 
a Dynamically Typed Language 

 
Steve Hanov 

University of Waterloo 
200 University Avenue West 

Waterloo, Ontario, Canada N2L 3G1 
+1 519 888 4567 

steve.hanov@mail.com

   

ABSTRACT 
Object-oriented languages make predicting types at compile time 

very difficult. In order to avoid the expensive virtual method 

dispatch, a variety of call graph construction algorithms have 

been researched. Such information would also be helpful if 

applied to duck-typed languages--languages for which the 

variables are bound to types when they are assigned a value. In 

these languages, it is not even obvious to the programmer if 

calling a method will work, and any extra information that can be 

gleaned by the compiler would be helpful. 

In this paper, we summarize the existing work on type inference. 

We then implement the Cartesian Product Algorithm, applying it 

to zscript, a simple java-like object-oriented language with duck-

types. Because CPA was designed for self, language without 

variables, we make several additions and discuss the results. The 

efficiency of our implementation is analyzed using automatically 

generated programs, and possible future enhancements are 

discussed.  

1. INTRODUCTION 
Dynamically typed, (or “duck typed”) languages are useful for 

rapid prototyping and code reuse. In languages that have duck 

typing, a variable’s value determines what it can do, and implies 

that an object is interchangeable with any other object that 

implements the same interface, regardless of whether the objects 

are related by inheritance. [3] 

With no types to get in the way, generic algorithms are simple to 

do and code is easier to write. However, because method lookup 

and type checking is done at runtime, typographical errors will 

not manifest themselves until the code is run. It would be very 

useful to have these errors appear when the code is compiled. 

Otherwise, white box testing must take the program through not 

only every possible execution path, but every possible program 

state in order to ensure correctness. 

Without static types, one can show that it is impossible for a 

compiler determine whether the program is correct (all class 

member lookups will succeed). However, in a large class of 

cases, it is possible for the compiler to say with certainty that the 

program will fail. For example, the code in Figure 1 should 

result in an error during compilation. More complicated 

examples are constructed if b is assigned different values in 

multiple paths through the program, or recursion or 

polymorphism is used. 

In this paper, we will apply the Cartian Product Algorithm for 

type inference to a simple scripting language, called zscript, 

invented for this project. The scripting language allows the 

definition of classes, but variables do not get bound to a type 

until the time of assignment, and they can be re-assigned to a 

different type later on in the program. 

2. BACKGROUND 
The problem of call graph construction in a dynamically typed 

language is similar (but not identical) to virtual method call 

resolution. Much research has been put into type inference in 

statically-typed polymorphic object-oriented languages. If the 

compiler can determine, for example, that a virtual method call 

always resolves to the same method, then it can perform more 

interprocedural optimizations, such as procedure inlining or 

elimination of the virtual method dispatch. In zscript, the goal is 

not efficiency, but providing more information for the 

programmer. 

2.1 Prior Work 
Every type inference algorithm must, in some way, keep track of 

the types it encounters during the analysis. In [8], Tip and 

Palsberg classify type inference algorithms by the number of sets 

that they keep. Some algorithms keep a set of types for each 

expression. Other algorithms, such as RTA (Rapid Type Analysis 

[2]) keep one set of types for the entire program, at a cost of 

class BClass {     sub bar() {        print(“Hello, world!\n”);     } }  class AClass {     sub main() {         var b = new BClass;         b.bar();         b.foo();   // Error: b is type BClass, which has no  // foo method.     } } 
    Figure 1: Example Code 

 



decreased accuracy. In the other extreme, k-CFA [7] is the most 

expensive, and it keeps multiple sets per expression. 

The simplest algorithm is Class Hierarchy Analysis (CHA). It 

keeps no sets at all. When a method is called on an object, it is 

assumed that all possible subtypes of the statically declared type 

may be called. However, this method is unsuitable for a duck-

typed language, where there are no statically declared types. 

Another simple algorithm that would be feasible is name-based 

analysis. It is described in [8], but comes from multiple sources. 

This algorithm takes into account only the name of the method 

called. When method is called, it is deduced that the object must 

be one of the classes containing that method. This algorithm is 

very imprecise, because it is common for many unrelated classes 

to share one or more method names. However, it can be used to 

catch simple typos, such as “craete” instead of “create.” If no 

known class contains the method, the program could not possibly 

be correct. 

In the RTA algorithm [2], program analyses methods beginning 

at the entry point. When a method instantiates a class, the 

methods of that class are added to the possible methods called 

and they are analyzed. The algorithm is repeated until no new 

classes are instantiated. RTA gains much of its accuracy from 

having the object’s static type available.  Otherwise, when a 

method is called, no information is available other than the 

method name, and all methods with that name must be 

considered. As an example, many classes might have a create() 

method, so if create() is called, all of them will be added to the 

set of possible types. When the object’s static type is known, the 

possible methods are restricted to subclasses of that type. 

Palsberg and Schartzbach [5] specifically analyze call graphs in 

dynamically typed languages. They present an algorithm for 

creating what they call a trace graph on the whole program. The 

nodes are all of the methods in a program, and the edges are 

connections between a statement and the possible methods which 

it calls. From this graph, one can obtain a set of constraints on 

the types in the program (i.e. class A must have a method foo().) 

Plevyak and Chien [6] also present an algorithm for building call 

graphs, and apply it to the scheme programming language. The 

Cartesian Product Algorithm is based on this work. 

Lattice-based methods applied to type inference are the most 

accurate, and seem to originate with Shiver’s 1991 paper, [7]. In 

it, Shivers applies control flow analysis to the scheme 

programming language in order to statically gain information 

about the value of its variables. It is flow-sensitive, because it 

takes into account the order of execution of the program methods 

and statements. Shiver presents several variants of increasing 

complexity. In 0CFA, one set of information is associated with 

each expression in the program. When used for type analysis, the 

set contains all of the possible types of the variable, and the 

analysis proceeds as if the variable could be any of those types. 

This is similar to the way CPA works. In the more advanced 

method, k-CFA recognizes that the variable’s actual value can be 

only one element of that set, and so it analyses the program 

differently for each of the possible values. Each alternative 

analysis is called a contour. The increased computational cost 

results in greater precision. 

David Grove et al. [3] present a generalized lattice-based model. 

In their model, the nodes of the lattice are call graphs. In the top 

node, T, all methods call all other methods. In the bottom node 

⊥, no method calls any other method. The algorithm starts from 

T and selects nodes closer to ⊥ as it gains more information. 

Their paper shows that a number of algorithms for building call 

graphs, including both Palsberg’s and Plevyak’s, can be 

implemented using the generic lattice model, and tweaking how 

each statement affects the lattice and work list. 

In yet another algorithm, points-to-analysis call graph 

construction (PTA-CG), we begin at the main method, adding it 

to the call graph. Upon analyzing it, we generate points-to-

constraints, solve them, and then resolve further call sites. The 

algorithm is iterated until there are no further changes. 

For this paper, however, we will implement a type inference 

algorithm that is based on the Cartesian Product Algorithm 

(CPA) [1]. It is chosen because it can be readily applied to a 

duck-typed language, and it is relatively simple to implement. It 

is also efficient because it is not iterative. It only needs to 

analyze methods actually called in the program, and it only needs 

to analyze them once for each combination of input arguments. 

CPA was originally created for the self programming language 

[9]. Although self is object-oriented, it does not include classes or 

variables. CPA had to be modified to handle accessing class 

members. In addition, Ole Agesen’s paper [1] did not provide all 

of the details of the implementation, including how to efficiently 

propagate type information throughout the nodes of the type 

graph.  

3. ALGORITHM 
In zscript, when the user runs the program, its source text is first 

transformed into a syntax tree. Then, each node of the syntax tree 

is traversed to build both a type tree, and an intermediate 

representation called zimple. The type tree includes classes, class 

methods, and class variables, and it is used during the creation of 

zimple instructions to resolve local variable names according to 

scoping rules.  

 

Figure 2: Data flow for the zscript compiler. 



After each method of the program has been converted into an 

intermediate representation, they are processed one by one to 

gradually build a type graph, which will be described below. The 

data flow for the compiler is illustrated in Figure 2. 

3.1 Intermediate Representation 
To simplify analysis, the syntax tree is first converted into an 

intermediate representation. Each member function is packaged 

as a series of zimple instructions. The instructions are high-level 

and are designed to reduce the number of cases that must be 

handled. For example, before a constant is used, it must first be 

assigned to a temporary variable. As a result, the analysis needs 

only to consider operations on variables. Figure 3 shows the 

complete set of instructions that can be generated. As an 

example, the program statement “return a.b.foo(10).c” is 

converted into the these five zimple instructions: 

t0 = a.b; 

t1 = 10; 

t2 = t0.foo(t1) ; 

t3 = t2.c ; 

return t3 

 

3.1.1 Variable Map 
For efficiency, each variable in the program is referenced by a 

unique positive integer, rather than by name. As the program is 

being converted into zimple code, new variables encountered in 

class definitions and local variables declared inside class 

methods are added to the variable map. Each variable record 

contains its name and whether it is a class member. The variable 

map is implemented as an array, indexed by variable ID. 

3.1.2 Location Tracking 
It is desirable to retain the location information of certain types 

of program statements, so that the source code can be annotated 

later with type information that is useful to the programmer. 

Every element in the syntax tree contains location information 

specifying the source file, starting and ending line number, and 

character positions.  The location information will be transferred 

the certain zimple instructions for which it is interesting to know 

the types used, such as function calls. When the type graph is 

created later, this location information will be transferred into 

the corresponding type nodes. Thus, when the analysis is 

complete, the source code can be annotated with comments at 

each call site, indicating the inferred types of variables, and 

references to the points in the program where those variables 

obtained their values.  

After the building of the type graph is complete, zscript can 

optionally print each line of the input to the display. Before each 

line is printed, the nodes of the type graph are searched for 

corresponding location information, and if there is a match, the 

information contained in the node is displayed as comments in 

the program source. 
3.2 Type Graph 
After each method has been converted into its intermediate 

representation, zscript gradually builds a type graph by each 

method called by the program. 

The CPA is non-iterative. Only the methods that could 

potentially be called are processed, and (except for templates) 

they are only processed one time only.  

In our implementation of the algorithm, we use a work list. First, 

the constructor of the class containing the main method, and the 

main method itself is added to the work list. Then, while the 

work list is not empty, the methods of the work list are 

processed. During the processing of a method, more methods 

may be added to the work list. The algorithm terminates when no 

more methods remain to be analyzed. 

3.2.1 Building the Type Graph 
As each zimple statement is analyzed, the analyzer makes 

incremental modifications to the type graph, depending on the 

nature of the instruction. Certain instructions are ignored: 

Because the CPA is flow-insensitive, we skip over branch 

instructions and instructions that evaluate mathematical 

operators. 

The type graph consists of nodes and directed edges. Each node 

of the graph corresponds to a variable in the program, a function 

call site, a function call temple, or a member variable access or 

update. Node A is connected to node B if A can obtain its type 

from B.  Nodes that correspond to variables may additionally 

contain a set of types. Thus, to obtain the type of any variable in 

the program, one can perform a depth first search started at that 

variable’s node. The variable’s type may be any of the types 

encountered during the search.  

The nodes of the graph are distinguished into several classes: 

• VariableNodes correspond to a local variable or a class 

variable in the program. Although the variables are 

identified by their position in the variable map (See 

section 3.1.1), for debugging purposes they are 

assigned a unique, human readable name. Local 

variables are prefixed by their complete function name, 

such as MyClass.mysub.(NUMBER, 

STRING).mylocal. 

Assign Constant a = 10 

a = new AClass 

a = “” 

Assignment a = b 

Access 

Update 

Call 

a = b.c 

a.b = c 

a = b.c(d,e,f,…) 

Control Flow Label: 

if (a) goto L 

goto L 

return a 

Operators a = !b 

a = b + c 

a = b * c 

…etc 

Figure 3: zimple instruction types 



• FunctionCall nodes correspond to a call site. They 

provide a way for the variable nodes to indirectly link 

to the result of a function call, when the exact function 

template is not yet known. FunctionCall nodes connect 

VariableNodes to FunctionTemplate nodes. 

• FunctionTemplate nodes distinguish functions called 

with different arguments. Whenever a function is 

called with a new type of argument, a function template 

is created for it. A function template indirectly connects 

FunctionCall nodes to whatever local variable is 

returned from the function. 

• AccessNodes and UpdateNodes are similar to 

FunctionCall nodes and are used to provide access to 

class member variables. They are further described in 

section 3.4. 

Whenever an instruction that references a new variable is 

encountered, a node is created for that variable. If the variable 

has a type  assigned to it, the variable is added to the node’s type 

set. If one variable is assigned to another, the corresponding 

nodes are connected with an edge. See Figure 4 for an example. 

3.3 Function Calls 

3.3.1 Templates 
The CPA results from the observation that the return value of 

function calls may depend on the input parameters. An example 

given in [1] is the max function. max(float,float) will return a 

float value, while max(int,int) will return an integer value, and 

max(int, float) may return either. CPA solves this dilemma by 

separately analyzing each invocation of the method. Each 

invocation is referred to as a template. (Other papers may use the 

more general term contour). Within the function template, the 

type of each argument is known.  

Because each analysis of a function template could possibly yield 

different results, they all need their own copies of local variables. 

When a new function template is created, new copies of the 

nodes for all of the parameters and local variables are created, 

and space is created for them in the variable map (section 3.1.1). 

Whenever a function call instruction is encountered, and the 

types of all arguments are known, the CPA computes the 

Cartesian product of the types of the argument, and connects 

destination variable to all of the resulting method templates. For 

example, if  a = max(b,c), and b can be an integer or a float, and 

c can be an integer, then a is connected to both max(INT,INT) 

and max(INT,FLOAT). 

3.3.2 Graph Representation 
An astute reader will see that this procedure is not possible if the 

types of any of the variables are not known. The CPA handles 

this by creating two nodes. The destination variable gets its type 

from the FunctionCall node, which references the object and all 

of the arguments of the function call. There is a FunctionCall 

node for every call site. When the types of the object and 

arguments become known, then the FunctionCall node is 

connected to the appropriate FunctionTemplate nodes. See 

Figure 6 for an example. 

3.4 Dot Operator 
CPA does not consider access to member variables, because the 

if  () { 

    a = new AClass; 

} else { 

    a = new BClass; 

} 

b = a; 

Figure 4: Program statements, and their resulting 

type graph. 

Figure 6: Example of a FunctionCall and 

FunctionTemplate node. 

b = new MyClass; 

b.c = 10; 

a = b.c; 

 

Figure 5: Program statements that use class member 

variables, and the resulting type graph. 

 



self programming language does not use variables. In more 

conventional languages, procedures may use class member 

variables to communicate with each other. In order to apply CPA 

and give a complete the interprocedural analysis, we must first 

adapt it to work with member variables. 

Class members may be used in two ways. They can be accessed, 

so that their value is written to a local variable, and they can be 

updated so that they take on the value of a local variable. To 

make these two operations work with CPA, we convert class 

member variable accesses and updates into function calls. We 

create special nodes in the type graph with references to the 

object variable. In addition, the nodes have stored within them 

the name of the member that is being accessed or updated. These 

Access/Update nodes may then be treated in the CPA as normal 

function calls. Instead of pointing to a function template, they 

connect to the node associated with the class member. This is 

illustrated in Figure 5. 

4. EFFICIENCY 
Zscript is a new language, so there is no existing body of 

benchmarks. In order to analyze the scalability our 

implementation, we have two choices: translate existing 

benchmarks into zscript source code, or automatically generate 

some benchmark programs. At the time of this writing, Zscript 

does not have the capability of running standard benchmark 

algorithms. Thus, we choose the second option. 

4.1 Generating sample sets 
In order to test the efficiency of our implementation of CPA, we 

designed an algorithm for automatically generating programs of a 

given size. The algorithm takes as input two parameters: 

MaxLevels and MaxChildren, and it creates as output a valid 

zscript program. The resulting program consists of two types of 

classes: normal classes, and leaf classes. Normal classes have 

MaxChildren member variables, each of which is a reference to 

another class. Leaf classes do not have any member variables. 

All classes have a single function, foo(). For normal classes, this 

foo() method picks a random member variable and returns the 

result of calling foo() on that object. For leaf classes, the foo() 

method returns a new instance of the class in which it was 

defined.  

The resulting program forms a tree structure, consisting of  

N=MaxChildren
MaxLevels

+1 classes. An example with 

MaxChildren=1 and MaxLevels=2 is given in Figure 7. By 

changing the values of MaxChildren and MaxLevels, we are able 

to study how CPA reacts to both a large number of classes and a 

long chain of polymorphic calls. 

4.2 Results 
We tested the algorithm by running it ten times, using a variety 

of values for MaxChildren and MaxLevels. Zscript was compiled 

using the Microsoft C++ Compiler version 8, with optimizations 

disabled. The tests were performed on a 2.1 GHz Pentium 

processor, with disk swapping turned off. To minimize variance, 

tests were performed 10 times and the most frequently occurring 

time was taken. Only the time spent constructing the type graph 

was included, after the program had already been converted into 

zimple instructions. 

Tests were performed with extreme values for the values of 

MaxChildren and MaxLevels. Figure 8 illustrates the case where 

MaxChildren = 1 and MaxLevels is increased by factors of two. 

In the generated program, each object has only one data member, 

and calls the function foo() on it. The resulting program therefore 

has a polymorphic call chain of length equal to MaxLevels.  

The results are not that good. With a polymorphic call sequence 

of length 512, the time is more than 11 s, which it far too long to 

wait. It is worth noting, however, that such a program is highly 

unlikely in a non-functional programming language. 

 

MaxLevels Total Classes Time (ms) 

64 65 47 

128 129 250 

256 257 1563 

512 513 11543 

Figure 8: MaxChildren=1 

 

Figure 9 shows the results with MaxChildren=2. Because of the 

tree structure of the automatically generated program, the 

number of classes is greatly expanded. However, the CPA only 

analyzes methods actually called. Since only one (random) path 

through the tree is actually taken by the generated program, 

theoretically the algorithm has to analyze only a small number of 

methods compared to the actual number of methods that exist. In 

fact, only MaxLevels functions need to be analyzed.  

However, because the main object creates all of its children, 

which in turn causes all objects to be created, the the bulk of the 

time of the analysis is spent analyzing the constructors, and 

creating nodes for the member variables that will never be 

accessed. With 8193 classes, the analysis takes over 21 seconds. 

MaxLevels Total Classes Time (ms) 

7 129 16 

class Obj2 {     sub foo() {         return new Obj2;     } } class Obj1 {     var obj2 = new Obj2     sub foo() {         return obj2.foo();     } } class Obj0 {     var obj1 = new Obj1     sub main() {         return obj1.foo();     } }  
Figure 7: Example of generated program to test the 

efficiency of the algorithm. In this example, 

MaxChildren=1 and MaxLevels=2. 



8 257 47 

9 513 125 

10 1025 469 

11 2049 3875 

12 8193 21812 

Figure 9: MaxChildren=2 

 

In Figure 10, the above theory is tested. MaxLevels is fixed at 1, 

and the resulting program has a single class containing 

references to thousands of leaf classes. It seems that creating the 

nodes for member variables is taking much of the time of the 

analysis. 

MaxChildren Total Classes Time (ms) 

1024 1025 78 

2048 2049 282 

4096 4097 1047 

Figure 10: MaxLevels=1 

4.3 Discussion 
The algorithm was not implemented with efficiency in mind, so 

the above results are unsurprising. The algorithm is exceptionally 

good at resolving long chains of polymorphic calls, but in our 

implementation, it spends too much time creating nodes. The 

implementation could be optimized use a more efficient data 

structure for the graph. 

One thing that stands out in the algorithm is the amount of work 

that must be done when a new type is assigned to a variable. The 

graph must be searched from that variable to see if it is used as 

the object in any Access or Update nodes, or if the variable is 

used in any function call arguments. If it is, then the necessary 

connections must be made, and possibly more function templates 

will be added to the worklist. However, backtracking through the 

graph to find how the variable is used is probably an expensive 

operation that is hard to predict. It would be interesting to 

analyze real programs to see if the set of variables that use the 

type is generally small or large. 

5. ACCURACY 
The CPA algorithm will find, for each variable, the set of types 

that are assigned to it. In the simple language of zscript, it will 

never fail to find a type. So the resulting type set is always 

greater than or equal to the given types. 

If the resulting types are used for error checking, however, the 

results are not accurate enough. It is not acceptable for the 

compiler to claim that a variable is a certain type, and fail to run 

the program, when in reality the variable is assigned that type for 

a very short time period. Consider the following code: 

 // AClass contains foo method var a = new AClass;  a.foo(); // BClass does not contain the foo method a = new BClass;  a.bar(); 

 

The CPA algorithm will claim that when foo() is called, a can be 

of types {AClass, BClass}. However, at that point it can be of 

only one class and that is AClass, in which case calling foo() is 

acceptable. 

Much of the problem stems from the fact that CPA is a flow-

insensitive analysis. That is, unlike k-CFA, it does not consider 

the order in which that statements of the program are executed. It 

is possible to mitigate the problem, within a method, by 

converting the program to SSA form prior to the analysis: var a0 = new AClass;  a0.foo(); a1 = new BClass;  a1.bar(); 
 

The two different program points are then operating on different 

variables. However, that solves the problem only locally. It is 

unclear how to add subscripts to the member variables of classes, 

that are updated in multiple methods. 

Another way of solving the problem is to modify the semantics of 

the language, and only allow a variable to be bound to one type. 

For example, once a certain type of class is assigned to the 

variable, the VM could cause an exception of any other types are 

ever assigned to the variable. However, such a solution is drastic 

and undesirable, because it makes the language less flexible. 

5.1 Dynamic Class Loading 
One advantage of the CPA algorithm is that it analysis each 

method (or method template) only once. If dynamic class loading 

were supported by the language, then only a minimal amount of 

work would be necessary upon loading a new class, provided the 

type graph were saved. Only the new methods loaded in would 

have to be analyzed, plus any new templates that result. 

5.2 Flexible New Operator 
In our implementation, a method cannot be analyzed unless the 

type of the object, and all arguments are known. If any of these 

have an empty type set, the method is skipped and never 

analyzed, because a template cannot be created. 

If zscript were expanded, then certain features could make the 

CPA algorithm break down. For example, it would be very 

simple to allow the new operator to take a string as its argument, 

creating an object that is impossible to predict at compile time.  

5.3 Source code Annotation 
Because the CPA algorithm is a flow-insensitive algorithm it is 

not very suitable for error checking. For each variable, does find 

a complete set of types that may be assigned to that variable. 

However, at every program point the variable may only be one of 

those types, and when a class method is called using the variable 

of the object, it need not be in every one of those types.  

Although CPA finds a superset of the values that we wanted to 

find, it is still good enough for source code annotation. By 

carefully keeping track of the source of each type, and the 

locations in the source code, each variable’s declaration in the 

program text can be annotated with the types assigned to it, and 

the line numbers where those types are assigned. The 

programmer than then look for any surprises. With a duck-typed 



language, any extra information that the compiler can give would 

be very helpful. 

6. FUTURE ENHANCEMENTS 
The implementation of the Cartesian product algorithm for 

zscript can be made more efficient in several ways. One of the 

more expensive steps occurs when a new type is assigned to a 

variable. At that moment, a depth first search is performed to see 

if the value of that variable is ever used in a function call, either 

as the object or one of the arguments. For each such call sites, 

the Cartesian product of the types of the arguments are 

recalculated, and if there are any more connections to be made, 

the necessary edges are added to the type graph. This could 

reveal more types for other variables, so the procedure is 

repeated  recursively. Backtracking through the graph to find all 

users of a type is expensive, and the algorithm could potentially 

be improved by caching users of a node. 

During implementation, we made the decision to avoid caching 

any values in any nodes, to avoid the problem of updating cached 

values. So to find the type of a variable, the complete path from 

the variable to all of the sources of its type must searched. It is 

possible that less work could be done by copying the type set 

from the source nodes to higher points in the graph, such as the 

join points. 

7. CONCLUSIONS 
We have presented an implementation of the Cartesian product 

algorithm, applied to a new dynamically typed language. It was 

found that the original CPA had to be modified to take into 

account class member variables, and the dot operator. 

CPA is very good at inferring the resulting type of very long 

chains of polymorphic function calls. During implementation the 

goal was for correctness over efficiency, and the analysis 

revealed that the implementation is slow for enterprise-size 

projects. However, one must keep in mind that the target 

language is a scripting language and so are unlikely to have 

thousands of objects to analyze. 

CPA is relatively easy to understand and to implement. It is 

efficient enough for small programming sets, and it never 

underreports the types of the program. Because it analyzes only 

methods actually called, it is well suited for object-oriented 

languages where the program only uses a small portion of the 

methods available in a class library.  

CPU does a good job at inferring types, but because it is flow-

insensitive, it is unsuitable for error checking programs at 

compile time. However, implementing CPA is an ideal building 

block for a comprehensive type checking system in a dynamically 

typed language, especially when combined with more accurate  

methods, such as k-CFA. 
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